5. Vectors

b. Vector Addition

3. Properties

We here list the algebraic properties of vector addition and its relation to magnitude.

In the following, u\vec u, v\vec v, and w\vec w are vectors. Also, 0=0,0\vec 0=\langle0,0\rangle is called the Zero Vector which is the vector whose components are both zero , while v=v1,v2-\vec v=\langle-v_1,-v_2\rangleis called the Negative of v\vec v which is the vector whose components are the negatives of those for v\vec v.

First, there are 77 properties involving just vector addition.

Vector Addition Properties
Let u\vec u, v\vec v, and w\vec w be arbitrary vectors. Then,

  1. Addition is Commutative:   u+v=v+u\vec u+\vec v=\vec v+\vec u

Proof

u+v=u1,u2+v1,v2=u1+v1,u2+v2=v1+u1,v2+u2=v1,v2+u1,u2=v+u\begin{aligned} \vec u+\vec v &=\left\langle u_1,u_2\right\rangle+\left\langle v_1,v_2\right\rangle =\left\langle u_1+v_1,u_2+v_2\right\rangle \\ &=\left\langle v_1+u_1,v_2+u_2\right\rangle =\left\langle v_1,v_2\right\rangle+\left\langle u_1,u_2\right\rangle \\ &=\vec v+\vec u \end{aligned} A geometrical proof was also given on the previous page.

[×]
  1. Addition is Associative:   (u+v)+w=u+(v+w)(\vec u+\vec v)+\vec w=\vec u+(\vec v+\vec w)

Proof

(u+v)+w=(u1,u2+v1,v2)+w1,w2=u1+v1,u2+v2+w1,w2=u1+v1+w1,u2+v2+w2=u1,u2+v1+w1,v2+w2=u1,u2+(v1,v2+w1,w2)=u+(v+w)\begin{aligned} (\vec u+\vec v)+\vec w &=\big(\left\langle u_1,u_2\right\rangle+\left\langle v_1,v_2\right\rangle\big) +\left\langle w_1,w_2\right\rangle \\ &=\left\langle u_1+v_1,u_2+v_2\right\rangle+\left\langle w_1,w_2\right\rangle \\ &=\left\langle u_1+v_1+w_1,u_2+v_2+w_2\right\rangle \\ &=\left\langle u_1,u_2\right\rangle+\left\langle v_1+w_1,v_2+w_2\right\rangle \\ &=\left\langle u_1,u_2\right\rangle +\big(\left\langle v_1,v_2\right\rangle+\left\langle w_1,w_2\right\rangle\big) \\ &=\vec u+(\vec v+\vec w) \end{aligned}

[×]
  1. 0\displaystyle \vec 0 is the Zero or Additive Identity:   v+0=v\displaystyle \vec v+\vec 0=\vec v

Proof

v+0=v1,v2+0,0=v1+0,v2+0=v1,v2=v\begin{aligned} \vec v+\vec 0 &=\left\langle v_1,v_2\right\rangle+\left\langle0,0\right\rangle \\ &=\left\langle v_1+0,v_2+0\right\rangle \\ &=\left\langle v_1,v_2\right\rangle \\ &=\vec v \end{aligned}

[×]
  1. v-\vec v is the Negative or Additive Inverse of v\vec v:   v+(v)=0\displaystyle \vec v+(-\vec v)=\vec 0

Proof

v+(v)=v1,v2+v1,v2=v1v1,v2v2=0,0=0\begin{aligned} \vec v+(-\vec v) &=\left\langle v_1,v_2\right\rangle+\left\langle-v_1,-v_2\right\rangle \\ &=\left\langle v_1-v_1,v_2-v_2\right\rangle \\ &=\left\langle0,0\right\rangle=\vec 0 \end{aligned}

[×]
  1. The Zero Vector, 0\vec 0, is Unique:
       If z\vec z is a vector which satisfies v+z=v\vec v+\vec z=\vec v, then z=0\vec z=\vec 0.  

Proof

If z=z1,z2\vec z=\left\langle z_1,z_2\right\rangle and v=v1,v2\vec v=\left\langle v_1,v_2\right\rangle, then: v+z=v1+z1,v2+z2 \vec v+\vec z=\left\langle v_1+z_1,v_2+z_2\right\rangle So the equation v+z=v\vec v+\vec z=\vec v says: v1+z1=v1andv2+z2=v2 v_1+z_1=v_1 \qquad \text{and} \qquad v_2+z_2=v_2 So z1=0z_1=0 and z2=0z_2=0, or z=0\vec z=\vec 0.

[×]
  1. The Negative, v-\vec v, is Unique:
       Given a vector v\vec v, if a vector w\vec w satisfies v+w=0\vec v+\vec w=\vec 0, then w=v\vec w=-\vec v.  

Proof

If w=w1,w2\vec w=\left\langle w_1,w_2\right\rangle and v=v1,v2\vec v=\left\langle v_1,v_2\right\rangle, then: v+w=v1+w1,v2+w2 \vec v+\vec w=\left\langle v_1+w_1,v_2+w_2\right\rangle So the equation v+w=0\vec v+\vec w=\vec 0 says: v1+w1=0andv2+w2=0 v_1+w_1=0 \qquad \text{and} \qquad v_2+w_2=0 So w1=v1w_1=-v_1 and w2=v2w_2=-v_2, or w=v\vec w=-\vec v.

[×]
  1. Additive Cancellation:
       If u+v=w+v\vec u+\vec v=\vec w+\vec v, then u=w\vec u=\vec w.  

Proof

If u=u1,u2\vec u=\left\langle u_1,u_2\right\rangle, v=v1,v2\vec v=\left\langle v_1,v_2\right\rangle and w=w1,w2\vec w=\left\langle w_1,w_2\right\rangle, then: u+v=u1+v1,u2+v2 \vec u+\vec v=\left\langle u_1+v_1,u_2+v_2\right\rangle and w+v=w1+v1,w2+v2 \vec w+\vec v=\left\langle w_1+v_1,w_2+v_2\right\rangle So the equation u+v=w+v\vec u+\vec v=\vec w+\vec v says: u1+v1=w1+v1andu2+v2=w2+v2 u_1+v_1=w_1+v_1 \qquad \text{and} \qquad u_2+v_2=w_2+v_2 So u1=w1u_1=w_1 and u2=w2u_2=w_2, or u=w\vec u=\vec w.

[×]

Further, vector addition is related to magnitude by the triangle inequality which basically says that each side of a triangle is shorter than the sum of the other two sides and longer than the difference between the other two sides:

Triangle Inequality
Let u\vec u and v\vec v be arbitrary vectors. Then,

  1. Triangle Inequality:   uvu+vu+v\left|\rule{0pt}{9pt}\,|\vec u|-|\vec v|\,\right| \le |\vec u+\vec v| \le |\vec u|+|\vec v|

\quad\Longleftarrow\quad\Longleftarrow\quad Read this. It's easy and informative!

pf_TriIneq5

Optional
Vector Addition Properties 5, 6 and 7 were proved above by writing out the components of the equations. They can also be proved using only Vector Addition Properties 1-4, without writing out any components. These proofs will be assigned in the exercises.

© 2025 MYMathApps

Supported in part by NSF Grant #1123255